

PPW Overlaid Boiler Tubes for Higher Efficiency Waste to Energy Plants

Daido Steel Co., Ltd. Ethylene Super Tube Department February 16, 2010

PPW Plasma Powder Welding

Gas atomized High Ni-Cr powder developed and produced by Daido

Applications of PPW

Demand	Applications	Daido Original Powder
High temp. corrosion resistance	Boiler tube	21Cr-13Mo-2Co-3W-Ni (BST276) 22Cr-9Mo-2Co-Ni (BST625) 27Cr-Si-Al-W (BST1)
Anti-coking and carburization	Ethylene cracking	45Cr-50Ni-1Mo
High temp. erosion Resistance	FCC nozzle	2C-21.5Cr-4.3Mo-9V-Co (KV10)
Anti-metal dusting	GTL, CTL	50Cr-Ni

The History of PPW

PPW: Plasma Powder Welding 1960-1964 Union Carbide Co. in USA developed welding application of plasma energy and powder metallurgy. 1973-1991 Daido Steel developed automatic Plasma Powder Welding (PPW) machine for engine valve. Plasma arc generator, gas controller, powder metal feeder, and particle size controlling were patented by Daido. 1992-More than 150 PPW machines for engine valve have been shipped to auto motive engine valve companies.

The History of Boiler Super Tube

- 1994- Daido developed Boiler tubes with PPW overlay for the waste to energy plant with the Japan national project.
- 1998- Daido started commercial manufacturing of Boiler Super Tube (BST276, BST625) for Japanese waste to energy plants.
- 2009- Daido developed New BST1 for higher Temperature.

Production Process of BST

Inspection

Macro and Micro test - PPW thickness - Luck of fusion Chemical Analysis - PPW layer composition

Benefits of BST Boiler Super Tube

- (1)Control of the chemistry of PPW overlay by the original metal powders
- (2) New grade of PPW overlay BST1 for higher temperature or longer tube life
- (3) PPW overlay on the inner surface of boiler tubes also available (Min. ID:2", Max length:5m)

Existing Generation Materials BST 276 & BST 625

Steam Temperature: Max. 500 degree C

Chemistry of Weld overlay (Typical)

Unit: WT%

	C	Si	Mn	Ni	Cr	Mo	Со	W	Fe
BST276	.01	.8	.2	Bal	20.8	13.2	2.2	3.1	1.0
BST625	.01	.2	.1	Bal	21.8	9.2	2.0	-	1.2

Actual corrosion depth in the waste to energy plant

Corrosion Depth (mm)

(Ref.) Mechanical Properties of Boiler tubes

(Base 5m/m + PPW 2m/m)

STB340 + BST276(PPW)								
R.T.								
T/S El								
Base tube	620	28.8						
With PPW	601	41.2						

Application of BST276 & BST625

Base tube	Size	OD: 31.8-114.3mmφ, Thickness: 3.5-6.0mm, L(Shipping length): 0.9-8.2M					
	Grade	STB340, STB410, SUS310J1					
PPW	Thickness	1.5-3.5mm (Single pass)					
overlay	Grade	BST276, BST625, BST310S					
Plants	24 waste to Energy Plants in Japan (Location: Tokyo, Osaka, Nagoya, Hokkaido, Tochigi, Kyoto, Kagawa, Toyama, Chiba, etc)						
Quantity	Over 8000 Maximum ye	P's are on operation now. ears in operation is 10 years. (2010)					

New Generation Material "BST1" for higher temperature and longer tube life

Steam Temperature: Over 500 degree C

(1) Chemistry of PPW overlay (WT%)

	С	Si	Ni	Cr	Мо	Co	W	Al
BST1	Ad.	Ad.	BAL	27	-	-	Ad.	Ad.
BST625	0.01	0.8	BAL	22	9	2	-	
BST276	0.01	0.2	BAL	21	13	2	3	

(2) Concept of BST1 Chemistry

- Chemistry of BST1 is originally developed and applied for commercial Air-heater for Gasification and Ash Melting System. (Steam temperature: over 500°C (932°F))
- -Higher corrosion resistance with higher Cr than BST625 or BST276.
- -Higher W than BST276 prevents the formation of Cr-depleted zones.
- -Added Si, Al prevent corrosion by Cl through grain boundaries.
- Adequate C makes fine grains to protect against corrosion through grain boundaries.

(3) Results by Corrosion test in molten Salts

Corrosion Test

JIS Z 2293

Methods for high temperature corrosion test of metallic materials by dipping and embedding in molten salts

<u>Salts</u>

	Mol. %	Wt. %
Na ₂ SO ₄	3	16.8
K ₂ SO ₄	3	20.6
Fe ₂ O ₃	2	12.6
PbCl ₂	3	28.15
FeCl ₂	3	12.85
NaCl	2	3.95
KCl	2	5.05

Dipping temperature and time

٥C	400	600	800
٥F	752	1,112	1,472
time		100 hours	

Consistent with the above data - almost no corrosion of BST1 even at 800°C

(6) Microstructure of cross section

800°C x 100 hrs

Surface

Surface of BST1 is almost flat without corrosion.

Surfaces of BST276 and BST625 are heavily damaged.

BST625 (800°C x 100 hrs)

BST276 (800°C x 100 hrs)

Conclusions

- Boiler Super tube BST276 and 625 have been applied in the Japanese Waste to Energy plants since 1998 without any troubles.
- A new generation Boiler Super Tube BST1 has been developed by higher contents of Cr, W, Al, and Si, without Mo and Co.
- A high temperature (800°C or 1,472°F) molten salt test revealed higher corrosion resistance of BST1 as compared with BST276 or BST625 against oxide and chloride formations.
- BST1 is expected to enable higher steam temperatures with longer tube life, resulting in higher efficiency for waste to energy plant operation.

Thank you so much for your attention

ARIGATO GOZAI MASHITA !!

Control of the chemistry of PPW overlay Case of Inconel 625 overlay

Case1: Conventional Weld overlay of Inco 625 by Mig

with 9% dilution

(WT%)

	Thickness					С	Si	Mn	Ni	Cr	Mo	Nb+Ta	Co	Fe
a	Total overlay(mm)	2.3	Base Metal	STB	6	0.10	0.20	0.50	0.00	0.00	0.00	0.00	0.00	99.00
b	Penetration(mm)	0.20	Mig filler metal	Incof	25	0.02	0.30	0.07	61.00	22.20	9.20	3.50	0.00	3.10
c	Additional(mm)	2.1	Overlay			0.03	0.29	0.11	55.70	20.27	8.40	3.20	0.00	11.44
	Dilution(%)	8.7	Spec	Inco6251	Min					20.00	8.00	3.15		
				Ν	Max	0.10	0.50	0.50	Bal	23.00	10.00	4.15		5.00

Case2: BST625: PPW weld overlay with original powdfer by PPW with 15% dilution

	Thickness				C	Si		Mn	Ni	Cr	Mo	Nb+Ta	Со	Fe
a	Total overlay(mm)) 2.3	Base Metal	STB	0.10	0.2)	0.50	0.00	0.00	0.00	0.00	0.00	99.00
b	Penetration(mm)	0.35	PPW powder	Origina	al 0.02	0.3)	0.30	59.00	25.50	10.50	4.00	0.00	0.00
c	Additional(mm)	2.0	Overlay		0.0	03 0.	28	0.33	50.02	21.62	8.90	3.39	0.00	15.07
	Dilution(%)	15.2	Spec	Inco625 N	Лin					20.00	8.00	3.15		
				Ν	1ax 0.	0 0.	50	0.50	Bal	. 23.00	10.00	4.15		5.00